SADLER MATHEMATICS METHODS UNIT 1

WORKED SOLUTIONS

Chapter 9 Sets and probability

Exercise 9A

Quest	on 1	
а	$\frac{1}{2}$	
b	$\frac{1}{2}$	
С	$\frac{1}{2}$	
d	$\frac{1}{3}$	
е	$\frac{2}{3}$	

a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ d $\frac{1}{18}$ e $\frac{5}{18}$ f $\frac{13}{18}$

- **a** 0.3
- **b** 0.7
- **c** 0.5
- **d** 0.8

a $\frac{1}{8}$ **b** $\frac{1}{8}$ **c** $\frac{3}{8}$ **d** $\frac{1}{2}$ **e** $\frac{1}{8}$ **f** $\frac{1}{4}$

Question 5

Sum of 1 + 2 + 3 + 4 + 5 + 6 = 21

Number on bottom	1	2	3	4	5	6
Sum of visible numbers	20	19	18	17	16	15

a P(the total obtained is less than 15) = 0

b P(the total obtained is more than
$$15) = \frac{5}{6}$$

c P(the total obtained is divisible by 3) =
$$\frac{1}{3}$$

d P(the total obtained is divisible by 5) =
$$\frac{1}{3}$$

e P(the total obtained is divisible by both 3 and 5) = $\frac{1}{6}$

© Cengage Learning Australia Pty Ltd 2018

a $\frac{1}{10}$ **b** $\frac{3}{20}$ **c** $\frac{47}{100}$ **d** $\frac{12}{25}$ **e** $\frac{7}{10}$ **f** $\frac{11}{50}$

Question 7

- **a** 0.327
- **b** 0.672

- **a** 7
- **b** 9
- **c** 10
- **d** 3
- **e** {8,9,10}
- **f** {1,3,5,7,9}
- **g** {9}
- **h** {1,3,5,7,8,9,10}

a $n(A \cup B) = 67$

b $n(\overline{A \cup B}) = 3$

Question 10

46 - 25 = 2142 + 21 = 63 $\therefore 80 - 63 = 17$

Question 11

x+7+5+2x+9 = 72 3x+21 = 72 3x = 51x = 17

$$\frac{x+7}{2} + x + x + 7 + 9x = 137$$
$$\frac{x+7}{2} + 11x = 130$$
$$x+7 + 22x = 260$$
$$23x = 253$$
$$x = 11$$

$$n(\overline{B \cup C}) = x + 4 = 11$$

$$x = 7$$

$$n(U) = x + 4 + x + 1 + 5 + 3x + 3 + 2x - 1 + 4$$

$$= 7x + 16$$

a If $x = 7$, $n(U) = 49 + 16$

$$= 65$$

b $n(A \cap B) = 4 + x + 1$

$$= 4 + 7 + 1$$

$$= 12$$

c $n(A \cap B \cap C) = x + 1$

$$= 8$$

а	0.6
b	0.2
С	0.1
d	0.7
е	0.9
f	0.3

 $\frac{10}{19}$ а $\frac{12}{19}$ b <u>9</u> 19 С $\frac{10}{19}$ d $\frac{1}{19}$ е $\frac{3}{19}$ f $\frac{13}{19}$ g $\frac{16}{19}$ h $\frac{18}{19}$ i

a $\frac{17}{40}$ **b** $\frac{13}{40}$ **c** 0 **d** $\frac{3}{4}$ **e** $\frac{1}{4}$ **f** 1

Question 17

 $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ = 0.3 + 0.5 - 0.6 = 0.2

Question 18

 $P(M \cap C) = P(M) + P(C) - P(M \cup C)$ = 0.52 + 0.44 - 0.82 = 0.14

a $P(F \cap C) = 0.3$

b $P(M \cap \overline{C}) = 0.38$

15 + 18 - 20 = 13

a
$$P(both) = \frac{13}{20}$$

b
$$P(\text{team}) = \frac{13}{15}$$

Exercise 9B

Question 1

а	$\frac{1}{6}$	
b	$\frac{1}{5}$	

Question 2

а	$\frac{1}{4}$	
b	$\frac{1}{3}$	

Question 3

а	$\frac{1}{18}$
b	$\frac{1}{6}$

а	$\frac{1}{52}$
b	1

2	28	_ 7
a	100	25
b	<u>30</u> _	15
	52	26

а	$\frac{60}{100} = \frac{3}{5}$
b	$\frac{47}{100}$
С	$\frac{70}{100} = \frac{7}{10}$
d	$\frac{37}{100}$
е	$\frac{40}{100} = \frac{2}{5}$
f	$\frac{53}{100}$
g	$\frac{37}{47}$
h	$\frac{23}{53}$

a
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(x = 6 \cap x > 4)}{P(x > 4)}$$
$$= \frac{1}{6} \div \frac{1}{3}$$
$$= \frac{1}{2}$$
b
$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$
$$= \frac{P(x = 6 \cap x \text{ is even})}{P(x \text{ is even})}$$
$$= \frac{1}{6} \div \frac{1}{2}$$
$$= \frac{1}{3}$$
c
$$P(B|C) = \frac{P(B \cap C)}{P(C)}$$
$$= \frac{P(x > 4 \cap x \text{ is even})}{P(x \text{ is even})}$$
$$= \frac{1}{6} \div \frac{1}{2}$$
$$= \frac{1}{3}$$
d
$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
$$= \frac{P(x > 4 \cap x = 6)}{P(x = 6)}$$
$$= \frac{1}{6} \div \frac{1}{6}$$
$$= 1$$

e
$$P(C|A) = \frac{P(C \cap A)}{P(A)}$$
$$= \frac{P(x \text{ is even } \cap x = 6)}{P(x = 6)}$$
$$= \frac{1}{6} \div \frac{1}{6}$$
$$= 1$$
f
$$P(C|B) = \frac{P(C \cap B)}{P(B)}$$
$$= \frac{P(x \text{ is even } \cap x > 4)}{P(x > 4)}$$
$$= \frac{1}{6} \div \frac{1}{3}$$
$$= \frac{1}{2}$$

The reader should note that although the formal working out is shown above, listing the sample spaces and working from those as shown in the text examples is a much simpler approach.

а	0.6 + 0.1 = 0.7
b	0.2 + 0.1 = 0.3
C	1 - 0.1 = 0.9
d	1 - 0.7 = 0.3
е	1 - 0.3 = 0.7
f	$P(A B) = \frac{P(A \cap B)}{P(B)}$
	$=\frac{0.1}{0.3}$ $=\frac{1}{3}$
g	$P(B A) = \frac{P(B \cap A)}{P(A)}$ $= \frac{0.1}{0.7}$ $= \frac{1}{7}$
h	$P(A A \cup B) = \frac{P(A \cap (A \cup B))}{P(A \cup B)}$ $= \frac{P(A)}{P(A \cup B)}$ $= \frac{0.7}{0.9}$ $= \frac{7}{9}$
i	$P(B A \cap B) = \frac{P(B \cap (A \cap B))}{P(A \cap B)}$

$$=\frac{0.1}{0.1}$$

=1

а	$\frac{3}{9} = \frac{1}{3}$
b	$\frac{5}{9}$
с	$\frac{7}{9}$
d	$\frac{1}{9}$
е	$1 - \frac{1}{3} = \frac{2}{3}$
f	$1 - \frac{5}{9} = \frac{4}{9}$
g	$P(A B) = \frac{P(A \cap B)}{P(B)}$
	$=\frac{1}{9} \div \frac{5}{9}$ $=\frac{1}{5}$
h	$P(B A) = \frac{P(B \cap A)}{P(A)}$ $= \frac{1}{9} \div \frac{3}{9}$ $= \frac{1}{3}$
i	$P(B AÈB) = \frac{P(B \cap (A \cup B))}{P(A \cup B)}$ $= \frac{P(B)}{P(A \cup B)}$ $= \frac{5}{9} \div \frac{7}{9}$ $= \frac{5}{7}$

a
$$\frac{4}{10} = \frac{2}{5}$$

b
$$\frac{1}{10}$$

c
$$P(A|D) = \frac{P(A \cap D)}{P(D)}$$
$$= \frac{1}{10} \div \frac{4}{10}$$
$$= \frac{1}{4}$$

d
$$\frac{6}{10} = \frac{3}{5}$$

e
$$P(E | A \text{ or } D \text{ only}) = \frac{P(E \cap A \text{ or } D \text{ only})}{P(A \text{ or } D \text{ only})}$$
$$= \frac{P(E \cap A) + P(E \cap D)}{P(A \text{ or } D \text{ only})}$$
$$= \frac{2}{10} \div \frac{6}{10}$$

$$= \frac{1}{P(A \text{ or } E)}$$
$$= \frac{2}{10} \div \frac{6}{10}$$
$$= \frac{1}{3}$$

Question 11

 $\frac{1}{6}$ а {1,**3**,5} b $P(x=3 | x \text{ is odd}) = \frac{P(x=3 \cap x \text{ is odd})}{P(x \text{ is odd})}$ $=\frac{1}{6}\div\frac{3}{6}$ $=\frac{1}{3}$

c {2,4,6} $P(x = 3 | x \text{ is even}) = \frac{P(x = 3 \cap x \text{ is even})}{P(x \text{ is even})}$ = 0 d {3}

$$P(x \text{ is even } | x = 3) = \frac{P(x \text{ is even } \cap x = 3)}{P(x = 3)}$$
$$= 0$$

e {1,2,3}

$$P(x = 2 | x < 4) = \frac{P(x = 2 \cap x < 4)}{P(x < 4)}$$
$$= \frac{1}{6} \div \frac{3}{6}$$
$$= \frac{1}{3}$$

f {1,2,3}

$$P(x \neq 2 \mid x < 4) = \frac{P(x \neq 2 \cap x < 4)}{P(x < 4)}$$

$$= \frac{2}{6} \div \frac{3}{6}$$

$$= \frac{2}{3}$$

g {1,2,3}

$$P(x < 2 | x < 4) = \frac{P(x < 2 \cap x < 4)}{P(x < 4)}$$

$$= \frac{1}{6} \div \frac{3}{6}$$

$$= \frac{1}{3}$$

h $\{1, 2, 3\}$

$$P(x \le 2 \mid x < 4) = \frac{P(x \le 2 \cap x < 4)}{P(x < 4)}$$
$$= \frac{2}{6} \div \frac{3}{6}$$
$$= \frac{2}{3}$$

a
$$\frac{1}{10}$$

b $\{2,4,6,8,10\}$
 $P(x=8 | x \text{ is even}) = \frac{P(x=8 \cap x \text{ is even})}{P(x \text{ is even})}$
 $= \frac{1}{10} \div \frac{5}{10}$
 $= \frac{1}{5}$
c $\{2,3,5,7\}$
 $P(x=8 | x \text{ prime}) = \frac{P(x=8 \cap x \text{ prime})}{P(x \text{ prime})}$
 $= 0$
d $\{2,3,5,7\}$
 $P(x=7 | x \text{ prime}) = \frac{P(x=7 \cap x \text{ prime})}{P(x \text{ prime})}$
 $= \frac{1}{10} \div \frac{4}{10}$
 $= \frac{1}{4}$
e $\{5,6,7,8,9,10\}$
 $P(x=8 | x > 4) = \frac{P(x=8 \cap x > 4)}{P(x > 4)}$
 $= \frac{1}{6}$
f $\{5,6,7,8,9,10\}$
 $P(x \neq 8 | x > 4) = \frac{P(x \neq 8 \cap x > 4)}{P(x > 4)}$
 $P(x \neq 8 | x > 4) = \frac{P(x \neq 8 \cap x > 4)}{P(x > 4)}$
 $= \frac{5}{10} \div \frac{6}{10}$
 $= \frac{5}{6}$

g {6,7,8,9,10}

$$P(x > 8 | x \ge 6) = \frac{P(x > 8 \cap x \ge 6)}{P(x \ge 6)}$$
$$= \frac{2}{10} \div \frac{5}{10}$$
$$= \frac{2}{5}$$

Question 13

a
$$P(x = 7 | x < 10) = \frac{P(x = 7 \cap x < 10)}{P(x < 10)}$$
$$= \frac{1}{20} \div \frac{9}{20}$$
$$= \frac{1}{9}$$

b
$$P(x=7 | x > 10) = \frac{P(x=7 \cap x > 10)}{P(x>10)}$$

= 0

d

 $P(x = 6 | x \text{ is a multiple of } 3) = \frac{P(x = 6 \cap x \text{ is a multiple of } 3)}{P(x \text{ is a multiple of } 3)}$ $= \frac{1}{20} \div \frac{6}{20}$ $= \frac{1}{6}$ {1,2,3,4,6,12}

$$P(x = 6 | x \text{ is a factor of } 12) = \frac{P(x = 6 \cap x \text{ is a factor of } 12)}{P(x \text{ is a factor of } 12)}$$
$$= \frac{1}{20} \div \frac{6}{20}$$
$$= \frac{1}{6}$$

e {1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} P(x is even|x \neq 4 or 10) = $\frac{P(x \text{ is even} \cap x \neq 4 \text{ or } 10)}{P(x \neq 4 \text{ or } 10)}$ = $\frac{8}{20} \div \frac{18}{20}$ = $\frac{4}{9}$

Question 14

a
$$P(B|A) = P(Total of 10 | first roll a 5)$$
$$= \frac{P(Total 10 \cap first roll a 5)}{P(first roll a 5)}$$
$$= \frac{1}{36} \div \frac{6}{36}$$
$$= \frac{1}{6}$$
b
$$P(A|B) = P(first roll a 5|)Total of 10$$
$$= \frac{P(first roll a 5 \cap Total 10)}{P(Total 10)}$$
$$= \frac{1}{36} \div \frac{3}{36}$$
$$= \frac{1}{3}$$
c
$$P(D|C) = P(total of 6|first is a 2)$$

$$= \frac{P(\text{total of } 6 \cap \text{first is a } 2)}{P(\text{first is a } 2)}$$
$$= \frac{1}{6} \div \frac{6}{36}$$
$$= \frac{1}{6}$$

© Cengage Learning Australia Pty Ltd 2018

d P(C|D) = P(first is a 2|total of 6) $= \frac{P(\text{first is a } 2 \cap \text{total of } 6)}{P(\text{total of } 6)}$ $= \frac{1}{6} \div \frac{5}{36}$ $= \frac{1}{5}$

e
$$P(F|E) = P(\text{total of } 5|\text{first is odd})$$

$$= \frac{P(\text{total of } 5 \cap \text{first is odd})}{P(\text{first is odd})}$$
$$= \frac{2}{36} \div \frac{18}{36}$$
$$= \frac{1}{9}$$

f
$$P(E|F) = P(\text{first is odd}|\text{total of 5})$$

_ P(first is odd \cap total of 5)

$$= \frac{1}{P(\text{total of 5})}$$
$$= \frac{2}{36} \div \frac{4}{36}$$
$$= \frac{1}{2}$$

Question 15

 $\frac{1}{2}$

- **a** $\frac{1}{20}$
- b

c {2,3,5,7,11,13,15,17} P(prime) = $\frac{8}{20}$

$$e^{\text{rime}} = \frac{1}{20}$$
$$= \frac{2}{5}$$

d

{3,6,9,12,1,5,18}

P(multiple of 3) = $\frac{6}{20}$ $=\frac{3}{10}$

 $\{1, 2, 3, 4, 6, 12\}$ е P(fact

$$tor of 12) = \frac{6}{20}$$
$$= \frac{3}{10}$$

f P(5|odd number) $= \frac{P(5 \cap odd \text{ number})}{P(odd \text{ number})}$ $=\frac{1}{20}\div\frac{10}{20}$ $=\frac{1}{10}$

g

$$P(3 | x < 6)$$

$$= \frac{P(3 \cap x < 6)}{P(x < 6)}$$

$$= \frac{1}{20} \div \frac{5}{20}$$

$$= \frac{1}{5}$$

h P(15 | x > 9) $=\frac{\mathrm{P}(15\cap x>9)}{\mathrm{P}(x>9)}=$ $=\frac{1}{20}\div\frac{11}{20}$ $\frac{1}{11}$

$$=\frac{1}{1}$$

i

$$P(9 | \text{ multiple of } 3)$$

$$= \frac{P(9 \cap \text{ multiple of } 3)}{P(\text{multiple of } 3)}$$

$$= \frac{1}{20} \div \frac{6}{20}$$

$$= \frac{1}{6}$$

j P(multiple of 3|factor of 12) $= \frac{P(\text{multiple of } 3 \cap \text{factor of 12})}{P(\text{factor of 12})}$ $= \frac{3}{20} \div \frac{6}{20}$ $= \frac{1}{2}$

k

$$P(\text{multiple of } 3|x > 15)$$

$$= \frac{P(\text{multiple of } 3 \cap x > 15)}{P(x > 15)}$$

$$= \frac{1}{20} \div \frac{5}{20}$$

$$= \frac{1}{5}$$

L

P(multiple of
$$3|x \ge 15$$
)

$$= \frac{P(\text{multiple of } 3 \cap x \ge 15)}{P(x \ge 15)}$$

$$= \frac{2}{20} \div \frac{6}{20}$$

$$= \frac{1}{3}$$

a
$$P(A) = P(x > 300)$$

 $= \frac{12}{24}$
 $= \frac{1}{2}$
b $P(B) = P(x > 400)$
 $= \frac{6}{2}$

$$= \frac{1}{4}$$

c
$$P(A|B) = P(x > 300|x > 400)$$

=1

All numbers greater than 400 are greater than 300

$$d P(B|A) = P(x > 400|x > 300)$$

$$= \frac{P(x > 400)}{P(x > 300)}$$

$$= \frac{1}{4} \div \frac{1}{2}$$

$$= \frac{1}{2}$$

$$e P(A|\overline{B}) = P(x > 300|x \le 400)$$

$$= \frac{P(300 < x \le 400)}{P(x \le 400)}$$

$$= \frac{1}{4} \div \frac{3}{4}$$

$$= \frac{1}{3}$$

$$f P(\overline{A}|B) = P(x \le 300|x > 400)$$

$$= 0$$

The little thought

Each toss of a coin is independent and therefore what happened has no impact on what will happen.

а	$\frac{1}{2}$
b	$\frac{1}{2}$

© Cengage Learning Australia Pty Ltd 2018

Exercise 9C

Question 1

B G*

d P(no reds|2nd one green) =
$$\frac{2}{4} = \frac{1}{2}$$

Question 2

a P(two reds|first red) = $\frac{2}{6} = \frac{1}{3}$

b P(one green|first not blue) = $\frac{5}{9}$

c P(first blue|second red)
$$=\frac{2}{6}=\frac{1}{3}$$

d P(second red|first blue) = $\frac{2}{3}$

a P(Laurie wins both rounds) =
$$\frac{1}{9}$$

b P(Rob wins at least one round) = $\frac{5}{9}$

*consider using complementary event:

1 – P(Rob wins no rounds)

c P(Laurie wins neither|Steven wins the second round) = $\frac{2}{3}$

a P(one of letters is an A) =
$$\frac{4}{16} = \frac{1}{4}$$

b P(the two letters are the same)
$$=\frac{3}{16}$$

D D F

D D E

D D F

d P(second letter is D|two letters are not the same) = $\frac{6}{13}$

a
$$P(AT) = \frac{1}{20}$$

b P(starts with E) =
$$\frac{4}{20} = \frac{1}{5}$$

c P(ends with T)
$$=\frac{4}{20} = \frac{1}{5}$$

d P(starts with E and ends with T) =
$$\frac{1}{20}$$

e P(starts with E|ends with T) =
$$\frac{1}{4}$$

f P(starts with T|ends with E) = $\frac{1}{4}$

Exercise 9D

- **a** $\frac{5}{36}$ **b** $\frac{1}{36}$ **c** $\frac{11}{36}$
- **d** $\frac{2}{36} = \frac{1}{18}$
- **e** $\frac{16}{36} = \frac{4}{9}$

		BLUE DIE					
		1	2	3	4	5	6
	1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
	2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
RED DIE	3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
	4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
	5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
	6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(<mark>6, 6</mark>)

		BLUE DIE					
		1	2	3	4	5	6
RED DIE	1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
	2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
	3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
	4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
	5	(5, 1)	(5, 2)	(5,3)	(5, 4)	(5, 5)	(5, 6)
	6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

 $\frac{1}{2}$ а $\frac{1}{6}$ b $\frac{1}{12}$ С $\frac{7}{12}$ d $\frac{3}{12} = \frac{1}{4}$ е f

 $\frac{1}{2}$

		DIE					
		1	2	3	4	5	6
z	Head	Н, 1	Н, 2	Н, 3	H, 4	H , 5	Η, 6
8	Tail	Т, 1	Т, 2	Т, 3	Т, 4	Т, 5	Т, б

а	$\frac{1}{52}$
b	$\frac{4}{52} = \frac{1}{13}$
С	$\frac{1}{2}$
d	$\frac{4}{52} = \frac{1}{13}$
е	$\frac{13}{52} = \frac{1}{4}$
f	$\frac{4}{52} = \frac{1}{13}$
g	$\frac{48}{52} = \frac{12}{13}$
h	$\frac{12}{52} = \frac{3}{13}$
i	$\frac{2}{52} = \frac{1}{26}$
j	$\frac{28}{52} = \frac{7}{13}$
k	$\frac{1}{52}$
I	$\frac{16}{52} = \frac{4}{13}$

a $\frac{1}{2}$ **b** $\frac{1}{4}$ **c** $\frac{3}{4}$ **d** $\frac{1}{2}$

Exercise 9E

а	P(A')=0.6
b	P(A and B) =0.12
С	P(B) = 0.12 + 0.48 $= 0.6$
d	$P(B A) = \frac{P(B \cap A)}{P(A)}$ $= \frac{0.12}{0.4}$ $= 0.3$
е	$P(A B) = \frac{P(A \cap B)}{P(B)}$ $= \frac{0.12}{0.6}$ $= 0.2$
f	$P(A B') = \frac{P(A \cap B')}{P(B')}$ $= \frac{0.28}{0.4}$ $= 0.7$

P(A') = 0.4а P(neither A or B)=0.2 b С P(B) = 0.06 + 0.2= 0.26P(at least one of A or B) d = 0.06 + 0.54 + 0.2= 0.8*1-P(neither) =1-0.2= 0.8 $P(B|A) = \frac{P(B \cap A)}{P(A)}$ е $=\frac{0.06}{0.6}$ = 0.1 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ f $=\frac{0.06}{0.26}$ $=\frac{3}{13}$

a P(B then G) =
$$\frac{21}{90}$$

= $\frac{7}{30}$
b P(BG or GB) = $\frac{21}{90} + \frac{21}{90}$
= $\frac{42}{90}$
= $\frac{7}{15}$
c P(same colour) = $\frac{42}{90} + \frac{6}{90}$
= $\frac{48}{90}$
= $\frac{8}{15}$
d P(BB|same colour) = $\frac{P(BB)}{P(same)}$
= $\frac{42}{90} \div \frac{48}{90}$
= $\frac{42}{48}$
= $\frac{7}{8}$

P(marble from B) = $\frac{3}{4}$ а

b
$$P(\text{blue}|\text{Bag B}) = \frac{P(\text{Blue} \cap \text{Bag B})}{P(\text{Bag B})}$$
$$= \frac{12}{20} \div \frac{3}{4}$$
$$= \frac{4}{5}$$

 $P(\text{marble from Bag A}|\text{blue marble}) = \frac{P(\text{from A} \cap \text{blue})}{P(\text{blue})}$ С

$$= \frac{3}{20} \div \left(\frac{3}{20} + \frac{12}{20}\right)$$
$$= \frac{3}{20} \div \frac{15}{20}$$
$$= \frac{3}{15}$$
$$= \frac{1}{5}$$

Question 5

.4 M 0.2 A' 0.08 .6 0.4 A 0.24 а P(female) = 0.6P(studying course A + = 0.32 + 0.24b = 0.56 $P(male|studying course A) = \frac{P(male studying course A)}{P(studying course A)}$ С $= 0.32 \div (0.32 + 0.24)$ $=\frac{4}{7}$ $P(\text{female}|\text{not studying course A}) = \frac{P(\text{female} \cap \text{not studying course A})}{P(\text{not studying course A})}$ d $= 0.36 \div (0.08 + 0.36)$ $=\frac{9}{11}$

© Cengage Learning Australia Pty Ltd 2018

a
$$P(Bag A) = \frac{1}{2}$$

b $P(Bag C) = \frac{1}{6}$
c $P(red) = \frac{1}{6} + \frac{1}{12} + \frac{1}{30}$
 $= \frac{17}{60}$
d $P(blue) = 1 - P(red)$
 $= 1 - \frac{17}{60}$
 $= \frac{43}{60}$
e $P(red and from Bag A) = \frac{1}{6}$
f $P(blue or from Bag B) = \frac{43}{60} + \frac{1}{12}$
 $= \frac{4}{5}$
g $P(from Bag A|red) = \frac{P(BagA \cap red)}{P(red)}$
 $= \frac{1}{6} \div \frac{17}{60}$
 $= \frac{10}{17}$
h $P(from Bag B|blue) = \frac{P(from bag B \cap blue)}{P(blue)}$
 $= \frac{3}{12} \div \frac{43}{60}$
 $= \frac{15}{43}$

a P(grade B) =
$$\frac{4}{9} + \frac{3}{12}$$

= $\frac{25}{36}$
b P(B+|B) = $\frac{P(B+\cap B)}{P(B)}$
= $\frac{4}{9} \div \frac{25}{36}$
= $\frac{16}{25}$

a P(second year student) =
$$\frac{4}{9}$$

b P(second year or at home) = $\frac{4}{9} + \frac{55}{180}$
= $\frac{3}{4}$

$$P(\text{first year}|\text{at home}) = \frac{P(\text{first year} \cap \text{at home})}{P(\text{at home})}$$
$$= \frac{55}{180} \div \left(\frac{55}{180} + \frac{28}{180}\right)$$
$$= \frac{55}{180} \div \frac{83}{180}$$
$$= \frac{55}{83}$$

- **a** P(no disease and negative result) = 0.912
- **b** P(no disease and positive result) 0.038
- **c** P(incorrect result) = 0.001 + 0.038= 0.039

d
$$P(\text{disease}|\text{positive result}) = \frac{P(\text{disease} \cap \text{positive result})}{P(\text{positive result})}$$

= 0.049 ÷ (0.049 + 0.038)
= 0.563

Question 10

С

a P(1st disc not white) =
$$\frac{3}{5}$$

b P(3 red) = $\frac{3}{5} \times \frac{5}{9} \times \frac{4}{8}$ = $\frac{1}{6}$

P(2 discs selected) = P(Red then white)
=
$$\frac{6}{6} \times \frac{4}{7}$$

10 9

$$=\frac{4}{15}$$
d P(2 red and 1 white) = $\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$

$$= \frac{1}{6}$$

• P(2 red and 1 white|more than one is selected) = $\frac{P(RRW)}{P(2 \text{ or } 3 \text{ discs selected})}$ = $\frac{P(RRW)}{P(RW \text{ or } RRW \text{ or } RRR)}$ = $\frac{1}{6} \div (\frac{4}{15} + \frac{1}{6} + \frac{1}{6})$ = $\frac{5}{18}$

© Cengage Learning Australia Pty Ltd 2018

a P(2 reds) =
$$\frac{6}{10} \times \frac{5}{9}$$

= $\frac{1}{3}$
b P(RR or BB) = $\frac{1}{3} + \frac{4}{10} \times \frac{3}{9}$
= $\frac{7}{15}$
c P(no blue) = P(2 reds)
= $\frac{1}{3}$

d P(at least 1 blue) = 1 – P(no blue) = $\frac{2}{3}$

Question 2

 $P(faulty) = \frac{4}{100}$

a P(4 non faulty) =
$$\frac{96}{100} \times \frac{95}{99} \times \frac{94}{98} \times \frac{93}{97}$$

= 0.8472

b P(at least one is faulty) =
$$1 - P(\text{none faulty})$$

= $1 - 0.8472$
= 0.1528

 $P(faulty) = \frac{3}{200}$

a P(none faulty) =
$$\frac{197}{200} \times \frac{196}{199} \times \frac{195}{198} \times \frac{194}{197} \times \frac{193}{196}$$

= 0.9265

b P(at least one is faulty) =
$$1 - P(\text{none are faulty})$$

= $1 - 0.9265$
= 0.0735

a
$$P(3 \text{ reds}) = \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}$$

 $= \frac{1}{30}$
b $P(3 \text{ reds}) = P(3 \text{ reds or } 3 \text{ blue or } 3 \text{ green})$

b P(3 reds) = P(3 reds or 3 blue or 3 green)

$$= \frac{1}{30} + \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} + \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8}$$

$$= \frac{1}{20}$$
c P(no reds) = $\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$

$$= \frac{1}{6}$$

d P(at least 1 red) = 1 - P(no red)
=
$$1 - \frac{1}{6}$$

$$=\frac{5}{6}$$

a P(3 red) =
$$\frac{4}{10} \times \frac{4}{10} \times \frac{4}{10}$$

= 0.064
b P(3 the same) = $\left(\frac{4}{10}\right)^3 + \left(\frac{3}{10}\right)^3 + \left(\frac{3}{10}\right)^3$
= 0.118
c P(no red) = $\left(\frac{6}{10}\right)^3$
= 0.216
d P(at least 1 red) = 1 - P(no reds)

d
$$P(at least 1 red) = 1 - P(no reds)$$

= 1-0.216
= 0.784

Question 6

a
$$P(Y8 \text{ male}) = 0.24 \times 0.52$$

= 0.1248

b
$$P(Y8 \text{ and female}) = 0.24 \times 0.48$$

= 0.1152

P(red) =
$$\frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{1}{2}$$

= $\frac{5}{12}$

 $P(\text{positive result}) = 0.001 \times 0.98 \times 0.999 \times 0.01 \\= 0.01097$

Question 9

a $P(A) = \frac{1}{2}$ **b** $P(B) = \frac{2}{3}$

c
$$P(A \cap B) = \frac{1}{2} \times \frac{2}{3}$$
$$= \frac{1}{3}$$

d $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= \frac{1}{2} + \frac{2}{3} - \frac{1}{3}$ $= \frac{5}{6}$

a
$$P(A) = \frac{1}{3}$$

b $P(B) = \frac{1}{2}$
c $P(A \cap B) = \frac{1}{3} \times \frac{1}{2}$
 $= \frac{1}{6}$
d $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= \frac{1}{3} + \frac{1}{2} - \frac{1}{6}$
 $= \frac{2}{3}$

a
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.4 + 0.5 - 0.1
= 0.8

b $P(\overline{A \cup B}) = 1 - 0.8$
= 0.2

c $P(A|B) = \frac{P(A \cap B)}{P(B)}$
= $\frac{0.1}{0.5}$
= 0.2

d $P(B|A) = \frac{P(B \cap A)}{P(A)}$
= $\frac{0.1}{0.4}$
= 0.25

a
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.5 + 0.8 - 0.9
= 0.4

b $P(A|B) = \frac{P(A \cap B)}{P(B)}$
= $\frac{0.4}{0.8}$
= 0.5

c $P(B|A) = \frac{P(B \cap A)}{P(A)}$
= $\frac{0.4}{0.5}$
= 0.8

- **a** $P(all fail) = 0.02 \times 0.2 \times 0.15 \times 0.01 \times 0.005$ = 0.00000003
- **b** $P(\text{none fail}) = 0.98 \times 0.8 \times 0.85 \times 0.99 \times 0.995$ $\approx 0.66 \text{ (2dp)}$
- **c** P(at least 1 will fail) = 1 P(none fail)= 1 - 0.66= 0.34

a P(both correct) =
$$\frac{1}{6} \times \frac{1}{6}$$

= $\frac{1}{36}$

b P(neither correct) =
$$\frac{5}{6} \times \frac{5}{6}$$

= $\frac{25}{36}$

c P(at least one is correct) = 1 – P(none correct) = $1 - \frac{25}{36}$

$$=\frac{11}{36}$$

Question 15

- **a** $P(X \text{ and } Y \text{ both defective}) = 0.005 \times 0.01$ = 0.00005
- **b** P(neither defective) = 0.995×0.99 = 0.98505
- **c** P(at least 1 defective) = 1 P(neither defective) = 1 - 0.98505= 0.01495

Question 16

a P(all 3 defective) = $0.005 \times 0.01 \times 0.002$ = 0.0000001

- **b** P(none are defective) = $0.995 \times 0.99 \times 0.998$ ≈ 0.983 (3dp)
- **c** P(at least one defective) = 1 P(none defective)= 1 - 0.983= 0.017

© Cengage Learning Australia Pty Ltd 2018

a $P(bag B) = \frac{1}{2}$

b P(yellow from B) =
$$\frac{1}{2} \times \frac{4}{5}$$

= $\frac{2}{5}$

c P(yellow) = $\frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{4}{5}$ = $\frac{3}{5}$

d P(yellow or bag B) = P(yellow) + P(bag B) - P(yellow
$$\cap$$
 bag B)
= $\frac{3}{5} + \frac{1}{2} - \frac{2}{5}$
= $\frac{7}{10}$

Question 18

a P(bag B
$$\cap$$
 yellow) = $\frac{2}{3} \times \frac{4}{5}$
= $\frac{8}{15}$

b P(yellow or bag B) = P(yellow) + P(bag B) - P(bag B and yellow)

$$= \left(\frac{1}{3} \times \frac{2}{5} + \frac{2}{3} \times \frac{4}{5}\right) + \frac{2}{3} - \frac{8}{15}$$
$$= \frac{4}{5}$$

a
$$P(A \cup B) = P(A) + P(B) - P(A \cup B)$$

= 0.65 + 0.34 - 0.86
= 0.13
b $P(B|A) = \frac{P(B \cap A)}{P(A)}$
= $\frac{0.13}{0.65}$
= 0.2

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
$$0.2 = \frac{0.1}{P(A)}$$
$$P(A) = 0.5$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$0.25 = \frac{0.1}{P(B)}$$
$$P(B) = 0.4$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.5 + 0.4 - 0.1
= 0.8

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
$$\frac{1}{4} = \frac{3}{22} \div P(A)$$
$$P(A) = \frac{3}{22} \div \frac{1}{4}$$
$$= \frac{6}{11}$$
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$\frac{2}{5} = \frac{3}{22} \div P(B)$$
$$P(B) = \frac{3}{22} \div \frac{2}{5}$$
$$= \frac{15}{44}$$
$$P(A \cup B) = P(A) + P(B) - \frac{1}{2}$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= \frac{6}{11} + \frac{15}{44} - \frac{3}{22}$ $= \frac{3}{4}$

$$P(A|B) = \frac{1}{2}, P(A) = 0.55$$

or

P(A) = 0.55, P(B) = 0.5 If independent P(A)×P(B) = P(A ∩ B) $0.55 \times 0.5 = 0.275 \neq 0.25$ ∴ not independent

Question 2

 $P(B|A) = \frac{3}{4}$, P(B) = 0.75 : independent

or

If independent $P(A) \times P(B) = P(A \cap B)$ $0.4 \times 0.75 = 0.3$ \therefore independent

Question 3

$$P(A|B) = \frac{0.1}{0.4} = \frac{1}{4}, P(A) = 0.25$$
 : independent

Question 4

$$\begin{split} P(A) &= 0.2, \ P(B) = 0.2\\ P(A) \times P(B) &= 0.2 \times 0.2\\ &= 0.04\\ P(A \cap B) &= 0.1 \neq 0.04\\ &\therefore \ not \ independent \end{split}$$

 $P(A \cap B) = 0$: A and B are mutually exclusive

Question 6

 $P(A \cup B) = 1 - 0.2$ = 0.8 $0.8 = 0.3 + 0.5 + P(A \cap B)$ $P(A \cap B) = 0 \therefore A \text{ and } B \text{ are mutually exclusive}$

Question 7

P(A ∪ B) = 1-0.1 = 0.9 P(A ∪ B) = 0.25 + 0.55 + P(A ∩ B) P(A ∩ B) = 0.9 - (0.25 + 0.55) = 0.1 ∴ A and B are not mutually exclusive

Question 8

 $P(A \cap B) \neq 0$: A and B are not mutually exclusive

- **a** Mutually exclusive, cannot obtain 3 and 4 at the same time.
- **b** Not mutually exclusive, 2 is even and less than 5, so it is possible for both events to occur together.
- **c** Not mutually exclusive, 2 is both prime and even so it is possible for both events to occur together.
- **d** Mutually exclusive, it is not possible to have a number less than 3 and greater than 5.
- **e** Not mutually exclusive, 2 is both less than 3 and less than 5, so it is possible for both events to occur together.

Question 10

- **a** If marbles are replaced, each draw is independent.
- **b** If marble is not replaced, the result of the first draw affects the second, so they are dependent.

Question 11

$$P(T) = \frac{1}{2}$$
 $P(T|A) = \frac{1}{2}$

∴ independent

$$P(6) = \frac{1}{6} \qquad P(6 \mid T) = \frac{1}{6}$$

∴ independent

P(T ∩ 6) =
$$\frac{1}{12}$$
, P(T) = $\frac{1}{2}$, P(6) = $\frac{1}{6}$
 $\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
∴ P(T)×P(6) = P(T ∩ 6), events are independent

a
$$P(A|B) = P(A) = 0.2$$

b $P(B|A) = P(B) = 0.25$
c $P(A \cap B) = P(A) \times P(B)$
 $= 0.2 \times 0.25$
 $= 0.05$
d $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= 0.2 + 0.25 - 0.05$
 $= 0.4$
 $P(\overline{A \cup B}) = 1 - 0.4$
 $= 0.6$

Question 13

a $P(A \cap B) = 0$ b $P(B|A) = \frac{P(A \cap B)}{P(A)}$ $= \frac{0}{0.2}$ = 0c $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $= \frac{0}{0.3}$ = 0d $P(A \cup B) = P(A) + P(B)$ = 0.2 + 0.3 = 0.5

$$P(A \cup B) = 1 - 0.25$$

= 0.75
$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

= 0.25 + 0.5 - 0.75
= 0

 \therefore A and B are mutually exclusive

Question 15

a
$$P(A \cap B) = P(A) \times P(B)$$

= 0.5×0.6
= 0.3
b $P(A \cup B) = P(A) + P(B) - B$

b
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.5 + 0.6 - 0.3
= 0.8

c
$$P(B|A) = P(B) = 0.6$$

d
$$P(A|B) = P(A) = 0.5$$

$$P(A \cap B) = P(A) P(B)$$

= 0.25 P(B)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

0.85 = 0.25 + P(B) - 0.25 P(B)
0.6 = 0.75 P(B)
$$P(B) = \frac{0.6}{0.75}$$

= 0.8

$$P(A \cap B) = P(A) P(B)$$

= 0.25 P(B)
$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

0.25 P(B) = 0.25 + P(B) - 0.4
0.15 = 0.75 P(B)
$$P(B) = \frac{0.15}{0.75}$$

= 0.2

a If A and B are mutually exclusive then
$$P(A \cap B) = 0$$

 $P(A \cup B) = P(A) + P(B)$
 $= 0.2 + 0.4$
 $= 0.6$
 $P(\overline{A \cup B}) = 1 - 0.6$
 $= 0.4$
b If independent $P(A \cap B) = P(A) \times P(B)$
 $= 0.2 \times 0.4$
 $= 0.08$
 $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
 $= 0.2 + 0.4 - 0.08$

$$= 0.52$$

$$P(\overline{A \cup B}) = 1 - 0.52$$
$$= 0.48$$

a If mutually exclusive,
$$P(A \cap B) = 0$$

 $\therefore P(A \cup B) = P(A) + P(B)$
 $= 0.2 + 0.5$
 $= 0.7$
 $P(\overline{A \cup B}) = 1 - 0.7$
 $= 0.3$
b $P(A \cap B) = P(A) \times P(B)$
 $= 0.2 \times 0.5$
 $= 0.10$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= 0.2 + 0.5 - 0.1$
 $= 0.6$
 $P(\overline{A \cup B}) = 1 - 0.6$
 $= 0.4$

Question 20

a x = 0, A and B cannot occur together.

b
$$P(A|B) = P(A)$$

 $\frac{x}{x+5} = \frac{6+x}{x+13}$
 $x^2 + 13x = x^2 + 11x + 30$
 $2x = 30$
 $x = 15$

a P(the student is an Engineering student) = $\frac{507}{1448}$ = 0.35

b P(the student is an Engineering student|the student is male) =
$$\frac{407}{910} = 0.45$$

c P(the student is an Engineering student|the student is female) = $\frac{100}{538}$ = 0.19

d Results suggest that gender and whether or not a person chooses engineering are not independent. Significant differences between the ratio of engineering students who are male and female compared to a ratio of 35% of students choosing engineering.

- **a** P(the student is on the honours course) = $\frac{2522}{7252} = 0.35$
- **b** P(the student is on the honours course|the student is male) = $\frac{982}{2898} = 0.34$
- **c** P(the student is on the honours course|the student is female) = $\frac{1540}{4354} = 0.35$
- **d** Proportion of honour students overall is roughly the same as honour students given either gender, suggesting gender and whether a student is an honour student or not are independent.

If P(X) = P(X|Y) then X & Y are independent and $P(X \cap Y) = P(X) \times P(Y)$ P(X) = a + b $P(X|Y) = \frac{b}{b+c}$ $\therefore a + b = \frac{b}{b+c} \Longrightarrow b + c = \frac{b}{a+b}$ From the diagram P(Y) = b + c $= \frac{b}{a+b}$ = P(Y|X) $P(X \cap Y) = b$ P(X) = (a+b) P(Y) = (b+c)We know $a + b = \frac{b}{b+c}$ (a+b)(b+c) = b $P(X)P(Y) = P(X \cap Y)$

a
$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

= 0.7 + 0.6 - 0.8
= 0.5

b $P(\overline{A \cap B}) = 1 - 0.5$
= 0.5

c $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 $= \frac{0.5}{0.6}$
 $= \frac{5}{6}$

d $P(\overline{A}|B) = \frac{0.1}{0.6}$
 $= \frac{1}{6}$

e $P(A|\overline{B}) = \frac{0.2}{0.4}$
 $= 0.5$

Question 2

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

= 0.45 + 0.02 - 0.56
= 0.09
$$P(A) \times P(B) = 0.2 \times 0.45$$

= 0.09

$$= P(A \cap B)$$

Hence, A and B are independent

Completing the square:

$$2x^{2} - x - 36 = 0$$

$$2(x^{2} - \frac{1}{2}x - 18) = 0$$

$$2((x - \frac{1}{4})^{2} - \frac{1}{16} - 18) = 0$$

$$2((x - \frac{1}{4})^{2} - 18\frac{1}{16}) = 0$$

$$(x - \frac{1}{4})^{2} = 18\frac{1}{16}$$

$$= \frac{289}{16}$$

$$x - \frac{1}{4} = \pm\frac{17}{4}$$

$$x = \pm\frac{17}{4} + \frac{1}{4}$$

$$= -\frac{16}{4}, \frac{18}{4}$$

$$= -4, 4\frac{1}{2}$$

Quadratic formula:

$$2x^{2} - x - 36 = 0$$

$$a = 2, b = -1, c = -36$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{1 \pm \sqrt{1 - 4(2)(-36)}}{4}$$

$$= \frac{1 \pm \sqrt{1 - 4(2)(-36)}}{4}$$

$$= \frac{1 \pm \sqrt{1 + 288}}{4}$$

$$= \frac{1 \pm \sqrt{289}}{4}$$

$$= \frac{1 \pm 17}{4}$$

$$= -\frac{16}{4}, \frac{18}{4}$$

$$= -4, 4\frac{1}{2}$$

Factorisation:

$$2x^{2} - x - 36 = 0$$

(2x-9)(x+4) = 0
2x-9 = 0 or x+4 = 0
2x = 9 x = -4
x = 4\frac{1}{2}

Question 4

a P(**R) = 1

b P(R, G or Y, R)

Question 5

a Period: 180° Amp: 4

b Period: 120° Amp: 3

Question 6

When $\sin\theta = -0.53$, the angle is 32° below the *x*-axis $x^\circ = -148^\circ, -32^\circ, 212^\circ, 328^\circ$

$$C(x, y)$$

$$(5, -2) = \left(\frac{x+3}{2}, \frac{-5+y}{2}\right)$$

$$\frac{x+3}{2} = 5 \Longrightarrow x = 7$$

$$\frac{y-5}{2} = -2 \Longrightarrow y = 1$$

$$\therefore C(7, 1)$$

Question 8

- **a** P(female) = $\frac{55}{93}$
- **b** P(male who walks) = $\frac{7}{93}$

c P(male given they walk to work) =
$$\frac{7}{22}$$

d P(someone who walks to work given they are male) = $\frac{7}{38}$

a y-int,
$$x = 0$$

 $y = (0+2)^2(0-7)$
 $= 4(-7)$
 $= -28$
 $\therefore B(0,-28)$
b x-int, $y = 0$
 $0 = (x+2)^2(x-7)$

$$0 = (x+2)^{2}(x-7)$$

x+2=0 or x-7=0
x=-2 x=7
 \therefore A (-2, 0), D (7, 0)

c
$$a = 4, b = -108$$

d −108 < *p* < 0

$$\sin \theta = 0.24, \ \theta = \frac{\pi}{13}$$

$$(6 + 25 \sin \theta)(1 - 2\cos \theta) = 0$$

$$6 + 25 \sin \theta = 0 \quad \text{or} \quad 1 - 2\cos \theta = 0$$

$$\sin \theta = \frac{-6}{25} \qquad 2\cos \theta = 1$$

$$\theta = \pi + \frac{\pi}{13} \qquad \theta = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$= \frac{14\pi}{13}, \frac{25\pi}{13}$$

$$\therefore \theta = \frac{\pi}{3}, \frac{14\pi}{13}, \frac{5\pi}{3}, \frac{25\pi}{13}$$

- **a** P(left handed boy) = $\frac{1}{15}$
- **b** P(right handed girl) = $\frac{3}{10}$

c P(left handed given that the chosen student is a girl) = $\frac{5}{14}$

d P(a girl given that the chosen student is left handed) = $\frac{5}{7}$

Question 12

a $P(\overline{A} \cap \overline{B}) = 0.32$

b P(B) = 0.2

c
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.6 + 0.2 - 0.12
= 0.68

d P(B|A) = 0.2

e
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{0.12}{0.2}$$
$$= 0.6$$

f Yes, A and B are independent as P(B|A) = P(B) = 0.2

© Cengage Learning Australia Pty Ltd 2018